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Abstract: The expressiveness of the GOMS language for describing 
“how-to” knowledge determines what kinds of human activities can 
be captured by a GOMS task analysis.   This paper addresses the 
adequacy of this framework for representing human behavior in 
realistically time-pressured, uncertain, and otherwise demanding task 
environments.  Several improvements have been incorporated into a 
GOMS-like formalism called Procedure Description Language (PDL) 
and into a simple GOMS extension called GOMS+.  

 
 
1 GOMS 
 
Computer simulation has become 
an indispensable design aid for 
devices ranging from electronic 
circuits to automobile engines.  
Applying this technique to the 
design of human-machine systems 
would be desirable, but modeling 
the human components of these 
systems poses significant 
challenges.  Researchers have 
addressed these by developing a 
variety of frameworks for human 
performance modeling.  Among 
these, GOMS (Card, Moran, & 
Newell, 1984) has become the most 
well-known and widely used.  

GOMS is a formal language for 
representing how human operators 
carry out specified routine tasks.  It 
consists of four constructs: goals, 
operators, methods, and selection-
rules (hence the GOMS acronym). 

Goals represent desired actions or 
world states – e.g. GOAL:(delete-
file file-32) expresses a desire to 
remove (access to) a computer file 
called file-32.  GOMS interpreter1 
mechanisms determine behavior by 
mapping goal structures to 
sequences of operators, each 
representing a basic physical or 
cognitive skill such as shifting gaze 
to a new location, or grasping an 
object. 

The GOMS approach assumes 
that the modeled agent has already 
learned one or more methods for 
accomplishing any goal.  A 
method, available in a modeled 
agent’s “method library,” is used to 
decompose a goal into a sequence 

                                                        
1 Interpretation rules that define GOMS semantics can 
be incorporated into a computer program, allowing 
simulation of a GOMS agent.  Though the 
interpretation function is often carried out “by hand” 
(John and Kieras, 1994), longer, more complicated 
tasks require automation. 



of subgoals and operators.   For 
instance, the method below 
(specified informally) might be 
used to achieve the file deletion 
goal.  Some steps of the method 
(e.g. steps 3 and 6) correspond to 
operators and can thus be executed 
directly.  The others define 
subgoals that must be recursively 
decomposed using methods from 
the method library until an operator 
sequence is fully specified.2 

 
Method-126 for goals of form 
(delete-file ?file) 

1. determine ?location of ?icon 
for ?file 

2. move-mouse-pointer to 
?location 

3. press-with-hand mouse-
button 

4. determine ?location2 of 
trash-icon 

5. move-mouse-pointer to 
?location2 

6. release-hand-pressure 
mouse-button 

 
When there is more than one 

way to achieve a goal – i.e. 
alternative methods are available –  
a selection rule must be used to 
decide between them. For instance, 
one alternative way to delete a file 
(call it method-823) may be to use 
a search utility designed to locate 
named files in a large file directory 
structure, and then use the utility’s 
                                                        
2 Throughout this paper, a leading question mark will 
be used to indicate a variable. 

delete option once the target file 
has been found.  A selection rule 
for deciding between these methods 
might incorporate knowledge that 
method-126 is more convenient and 
therefore preferable as long as the 
location of the file is known.  Thus: 

 
     Selection-rule for goal:(delete-

file ?file)  
IF known (location ?file)  
THEN do method-126  
ELSE do method-823 

 
Nothing in the GOMS 

architecture specifies human 
behavioral characteristics that 
would naturally produce human-
like behavior. GOMS could just as 
easily be used to describe the 
action-selection behavior of an 
insect, superhero or robot.  For 
example, in GOMS, one could 
easily define a method for parking 
a car that involved picking the 
vehicle up and placing it in the 
desired location; nothing about 
GOMS makes this less desirable 
than a method more in line with 
typical behavior. Since many of the 
performance predictions one would 
wish to make with GOMS require a 
model of human attributes (e.g. 
strength limitations), GOMS is 
often coupled with a human 
attribute model such as the Model 
Human Processor (Card, Moran, & 
Newell, 1984).  Efforts to make 
GOMS a more powerful tool have 
focused almost exclusively on 



refining the model of human 
attributes, particularly temporal 
attributes of behavior such as the 
time needed to press a button or 
shift gaze (Olson and Olson, 1989; 
John and Kieras, 1994).  The 
GOMS language itself has 
remained unchanged. 

The expressiveness of the 
GOMS language for describing 
“how-to” knowledge determines 
what kinds of human activities can 
be captured by a GOMS task 
analysis.   In some ways, this 
language is clearly inadequate for 
describing even mundane 
behaviors. For example, people 
generally know to delay deciding 
which elevator door to move 
towards until there is some 
indication of where the next 
elevator will arrive.  People’s 
ability to delay in this case 
illustrates a general and crucial  
human capability: to wait until 
information becomes available 
(uncertainties are resolved) before 
committing to a course of action. 
GOMS does not support this 
capability. 

In this paper, we turn our 
attention to the adequacy of the 
GOMS notation for representing 
human behavior in task 
environments that are realistically 
time-pressured, uncertain, and 
otherwise demanding. The problem 
of characterizing agent capabilities 
needed for a given task 
environment has long been a focus 

of research within subfields of 
artificial intelligence concerned 
with planning and plan execution.  
The resulting understanding can be 
roughly broken down into two 
main areas: (1) capabilities needed 
to cope with uncertainty; and (2) 
capabilities needed to manage 
multiple, interacting tasks.  The 
following sections discuss how 
capabilities in these areas have 
been incorporated into a GOMS-
like formalism called Procedure 
Description Language (PDL).  PDL 
was developed as part of the APEX 
human modeling framework, a tool 
for predicting usability problems in 
complex, dynamic task domains 
such as air traffic control.  A subset 
of these improvements has been 
incorporated into GOMS+, a 
simple extension to GOMS that 
may appeal to APEX users for its 
simplicity and familiarity. 
2 PDL 

 
The central construct of the APEX 
Procedure Definition Language 
(PDL) is the procedure, closely 
analogous to the GOMS method3.   
The procedure consists of an index 
clause followed by one or more 
step clauses.   The example 
procedure below represents how-to 

                                                        
3A procedure generalizes the idea of method to include 
auxiliary activities such as post-completion behaviors 
(e.g. putting away the tools after a repair task), failure-
handling actions (if turning the ignition key doesn’t 
work, try again) and interruption-handling actions 
(apologize when interrupting a phone conversation).  
The term task generalizes on goal in an analogous way.     



knowledge for the routine behavior 
of turning on an automobile’s 
headlights. 

 
   (procedure 

(index (turn-on-headlights) 
       (step s1 (clear-hand left-hand)) 
       (step s2 (determine-loc 
headlight-ctl => ?loc) 

(step s3 (grasp knob left-hand 
?location)  

(waitfor ?s1 ?s2)) 
(step s4 (pull knob left-hand)  

(waitfor ?s3)) 
(step s5 (ungrasp left-hand)  

(waitfor ?s4)) 
       (step s6 (terminate) (waitfor 
?s5))) 

 
The index clause indicates that 

the procedure should be retrieved 
whenever a goal of the form (turn-
on-headlights) becomes active.  
Step clauses primarily describe 
activities needed to accomplish the 
goal. Steps are assumed to be 
concurrently executable.  For 
instance, step s1 above for clearing 
the left hand (letting go of any held 
object) and step s2 for locating the 
headlight controls do not need to be 
carried out in any particular order 
and do not interfere with one 
another; they may proceed in 
parallel.  When order is required, 
usually because finishing one step 
is a precondition for starting 
another, this can be specified using 
a waitfor clause.  For instance, one 
should not begin grasping the 

headlight control until its location 
is known and the hand that will be 
used to grasp it is free.  These 
preconditions are indicated by the 
waitfor clause embedded in step s3.  
The following two sections 
describe how the issues of 
uncertainty-handling and multitask 
management are addressed in PDL.  
Other aspects of PDL, including 
mechanisms for selecting between 
alternative procedures, managing 
periodic behavior, and adapting to 
varying degrees of time-pressure, 
are discussed in Freed (1998).  

 
2.1 Coping with uncertainty 
 
Some of the most important recent 
advances in AI concern how agents 
can act effectively in uncertain task 
environments.  Early agent 
architectures were designed to 
operate in very simple 
environments in which all relevant 
aspects of the current situation 
(world state) are known, no change 
occurs except by the agent’s action, 
and all of the agent’s actions 
succeed all of the time.  Most real-
world domains are not so benign. 

Uncertainty arises from a 
variety of factors.  First, many real 
task environments are far too 
complex to observe all the 
important events and understand all 
the important processes.  Decisions 
must therefore sometimes be made 
on the basis of guesswork about 
what is currently true and about 



what will become true.  Similarly, 
real task environments are often 
dynamic.  Forces not under the 
agent’s control change the world in 
ways and at times that cannot be 
reliably predicted.  Previously 
accurate knowledge of the current 
situation may become obsolete 
when changes occur without being 
observed. 

Additional sources of 
uncertainty arise from the nature of 
the agent itself.  Motor systems 
may be clumsy and imperfectly 
reliable at executing desired 
actions.  Perceptual systems may 
intermittently distort their inputs 
and thus provide incorrect 
characterizations of observed 
events.  Cognitive elements may 
lose or distort memories, fail to 
make needed inferences, and so on.   

Together, these various sources 
of uncertainty have a profound 
effect in determining what kinds of 
capabilities an agent requires to 
perform effectively.  For example, 
the possibility that some action will 
fail to achieve its desired effect 
means that an agent needs some 
way to cope with possible failure.  
Thus, it may require specialized 
mechanisms that formulate explicit 
expectations about what observable 
effect its action should achieve, 
check those expectations against 
observed events, then, if 
expectations fail, generate new 
goals to recover, learn and try 
again. 

PDL provides means for coping 
with several forms of uncertainty.  
The first, uncertainty about a future 
decision-relevant world state, is 
illustrated by the problem of 
deciding which elevator door to 
approach.  A knowledgeable 
elevator user will usually delay 
committing to one door or the other 
until there is information about 
which will arrive next.  This 
exemplifies a general strategy: 
delay decisions until relevant 
information becomes available.  As 
seen in the procedure below, such 
strategies are represented using the 
waitfor clause.    
    (procedure 

(index  (enter-first-available-
elevator)) 

(step s1 (summon-elevator)) 
(step s2 (approach-elevator-door 

?door)  
(waitfor ?s1 (open-door 

?door))) 
(step s3 (enter-door ?door) 

(waitfor ?s2)) 
(step s4 (reset ?self)  

(waitfor ?s2 (closed-door 
?door))) 

(step s5 (terminate) (waitfor 
?s3))) 

 
In this procedure, the task of 

approaching an elevator door (step 
s2) does not begin until after an 
elevator has been summoned and 
its door has opened.  When the 
latter event occurs, perceptual 
mechanisms detect an event of the 



form (open-door ?door); this 
causes the variable ?door to 
become bound to a mental 
representation of the newly opened 
door, thus resolving uncertainty 
about which elevator should be 
selected.  

Waiting passively for new 
information to resolve uncertainty 
is one of three typical strategies.  
The others are actively seeking 
information and gambling (making 
a best guess).   Active seeking is 
accomplished without any special 
PDL constructs.  Procedures must 
simply initiate actions such as 
shifting gaze or physically 
removing a visual obstruction that 
result in new information becoming 
available.  Gambling strategies can 
be encoded in several ways.   The 
simplest is to incorporate a best 
guess directly into a procedure.  
For example, if the left elevator 
door is almost always the first to 
open, step s2 in the procedure 
above might be replaced by: 
 
   (step s2 (approach-elevator-door 
left-door)  

(waitfor ?s1)) 
 

PDL and its interpreter support 
a variety of gambling strategies, 
each of which takes advantage of 
some kind of heuristic decision-
making bias.  For instance, 
assuming that the most frequent 
condition will hold in the current 
case (e.g. the left elevator appears 

first usually, so it will this time as 
well) constitutes reliance on 
frequency bias.   PDL supports 
this and other forms of bias4 with 
mechanisms that dynamically 
adjust how much influence bias has 
on a decision.  Bias that is normally 
be weak and not relied upon may 
be strengthened in time-pressured 
situations or high-workload 
situations.  Conversely, strong bias 
may be suppressed in some 
situations, especially in response to 
recently observed counterevidence.  
For instance, strong frequency bias 
may lead to a habit of approaching 
the left elevator in anticipation of 
its arriving first.  But upon seeing a 
sign claiming that the left elevator 
is under repair, the agent may 
revert to a watch and see strategy.  
Heuristic biases are a pervasive and 
quite useful element of normal 
decision-making, but they can also 
lead to error (Reason, 1990).  PDL 
support for representing biases 
makes it possible to represent 
cognitive mechanisms underlying 
error and thus facilitates error 
prediction (Freed and Remington, 
1998).   

PDL can also be used to 
represent knowledge about how to 
handle a second form of 
uncertainty that arises when actions 

                                                        
4 Frequency bias is a tendency to do or believe 
what is usually the case.  Recency bias is a 
tendency to do or believe what was true last time.  
Confirmation bias is a tendency to do or believe 
what accords with one’s expectations. 



have more than one possible 
outcome.  Multiple outcomes, 
particularly those constituting 
failure, require mechanisms for 
classifying the outcome and 
selecting an appropriate response.  
The procedure above provides a 
very simple example.  Consider the 
case where, while trying to enter an 
open elevator door (step s3), the 
agent sees the door close.  This 
should be construed as goal failure, 
causing the agent to try again.   
PDL provides an operator (low-
level behavior) called reset for 
restarting (retrying) a task.  Reset 
appears in step s4, and is invoked 
conditionally in response to seeing 
the elevator door close. 
 
2.2  Managing multiple tasks 
 
PDL and its interpreter were 
originally developed to represent 
the behavior of human air traffic 
controllers.  As with many of the 
domains in which human 
simulation could prove most 
valuable, air traffic control consists 
mostly of routine activity; 
complexity arises primarily from 
the need to manage multiple tasks.  
For example, the task of guiding a 
plane to a destination airport 
typically involves issuing a series 
of standard turn and descent 
authorizations to each plane.  Since 
such routines must be carried out 
over minutes or tens of minutes, the 
task of handling any individual 

plane must be periodically 
interrupted to handle new arrivals 
or resume a previously interrupted 
plane-handling task. 

The problem of coordinating 
the execution of multiple tasks 
differs from that of executing a 
single task because tasks can 
interact, most often by competing 
for resources.  In particular, each of 
an agent’s perceptual, motor and 
cognitive resources are typically 
limited in the sense that they can 
normally be used for only one task 
at a time. For example, a task that 
requires the gaze resource to 
examine a visual location cannot be 
carried out at the same time as a 
task that requires gaze to examine a 
different location.  When separate 
tasks make incompatible demands 
for a resource, a resource conflict 
between them exists.  To manage 
multiple tasks effectively, an agent 
must be able to detect and resolve 
such conflicts. 

The PDL interpreter determines 
whether two tasks conflict by 
checking whether they both require 
control of a resource.  Resource 
requirements for a task are 
undetermined until a procedure is 
selected to carry it out.  For 
instance, the task of searching for a 
fallen object will require gaze if 
performed visually, or a hand 
resource if carried out by grope-
and-feel. PDL denotes a 
procedure’s resource requirements 
using the profile clause.  For 



instance, adding the clause (profile  
(left-hand  8  10)) to the turn-on-
headlights procedure declares that 
turning on headlights conflicts with 
any other task that requires the left-
hand.5  

To resolve a detected resource 
conflict, decision-mechanisms must 
determine the relative priority of 
competing tasks, assign control of 
the resource to the winner, and 
either shed, defer, or interrupt the 
loser.  To compute relative priority, 
the interpreter uses information 
provided in priority clauses.  The 
simple form of a priority 
declaration specifies a numeric 
priority value ranging from 1 to 10.  
Alternately, a priority clause can 
specify urgency and importance 
values related to a specified source 
of priority. 

 
(step s3 (enter-door ?door) 

(waitfor ?s2) 
    (priority miss-elevator :urg 6 

:imp 2)) 
 

For example, the step above for 
entering an elevator derives priority 
from the possibility that the 
opportunity to board will be missed 
if the task is delayed too long. 
Urgency is fairly high to denote a 
limited window of opportunity. 
Since missing the elevator is 

                                                        
5 The profile clause and all other PDL constructs 
related to multitask management are discussed in 
detail in (Freed, 1998b). 

usually far from catastrophic, 
importance is low.   

In realistically demanding 
environments, several additional 
factors need to be considered in 
determining priority.  For instance, 
a task’s  urgency and importance 
may be context-dependent (not 
constant-valued), and may in fact 
vary dynamically over the lifetime 
of a task.   PDL allows users to 
specify how these values should be 
computed and under what 
circumstances they should be  
recomputed.  A  task may have 
several associated priority clauses, 
reflecting separate reasons to do the 
task sooner rather than later.  For 
instance, the need to enter an 
elevator expeditiously could stem 
from a desire to get in before it 
closes and also a desire to get in 
ahead of others.   

The possibility that a task might 
be interrupted presents additional 
issues.  First, handling an 
interruption often entails carrying 
out transitional behaviors.  For 
instance, interrupting a driving task 
typically involves doing something 
to keep from crashing such as 
pulling over to the side of the road.  
To facilitate such transitions, the 
PDL interpreter generates an event 
of the form (suspended <task>) 
whenever <task> is interrupted. 
The step below within the body of 
the driving procedure would 
produce this behavior: 

 



(step s15 (pull-over)   
    (waitfor (suspended ?self)) 
 
Second, continuity bias, the 

tendency to continue executing an 
ongoing task rather than switch to 
an interrupting task,  is represented 
with an interrupt-cost clause.  We 
currently assume that the degree of 
continuity bias depends on 
objective factors that make an 
interruption costly – e.g. having to 
engage in otherwise unnecessary 
transition behaviors, having to 
make up lost progress on the main 
task, and so on.  Interrupt cost 
raises a task’s importance, and thus 
it’s priority.   Unlike a priority 
clause, which applies whenever a 
task is eligible to be executed, 
interrupt-cost only applies to 
ongoing tasks. 

Third, it should be possible to 
take advantage of slack-time in a 
task’s need for given resources.  
For example, when stopped behind 
a red light, a driver’s need for 
hands and gaze is temporarily 
reduced, making it possible to use 
those resources for other tasks.   
Such within-procedure resource 
control strategies are specified 
using the suspend and reprioritize 
operators.  Suspend allows a 
procedure to interrupt itself, 
relinquishing control over 
resources and thus making them 
temporarily available to lower 
priority tasks.  Reprioritize causes 
the primary task to resume 

competing for resources, normally 
resulting in its acquiring them from 
tasks active during the slack 
interval.  E.g.: 

 
   (step s18 (reprioritize)  

(waitfor (color ?traffic-light 
green))) 
 
would allow a driving task that 
self-suspended in response to a red 
traffic light to resume. 
 
3 GOMS+ 
 
For APEX users more comfortable 
using GOMS than PDL, we have 
developed a GOMS 
implementation called GOMS+ that 
incorporates several of the 
capability extensions discussed in 
this paper.  As with GOMS, 
methods in GOMS+ are action 
sequences.  Behaviors that are 
contingent or off critical-path (such 
as those needed to handle failure) 
cannot be represented.   
 
   (method 1  for  (turn-on-
headlights))  
       (requires left-hand) 
       (do-in-parallel  
            (clear-hand left-hand)  

        (determine-loc headlight-
control => ?loc))    
   (grasp knob left-hand ?loc)  
   (pull knob left-hand)   

       (ungrasp left-hand)) 
 



   (method 1 for  (enter-first-
available-elevator) 
       (summon-elevator) 
       ((approach-door)  (waitfor 
(open-door ?door)) 
       (enter-door ?door)) 
 

The GOMS+ methods above 
illustrate several features of the 
language.  The construct do-in-
parallel enables some concurrent 
behavior.  For example, the clear-
hand and determine-location steps 
of the turn-on-headlight method are 
concurrently executable.  Some 
versions of GOMS already allow 
concurrent action, but only between 
operator-level behaviors; steps 
declared within the scope of a do-
in-parallel clause can represent 
either operators or non-operators 
that will have to be decomposed 
into subgoals. GOMS+ includes a 
second construct for concurrency 
control called race.  Steps declared 
within a race clause are carried out 
in parallel until any one step 
completes; at that point, the rest are 
forced to completion (aborted).  

GOMS+ also adopts the waitfor 
clause.  Since steps of method are 
sequentially ordered by default, 
there is no need to use waitfors to 
declare step order; in all other 
ways, the clause is used as a 
generic precondition declaration, 
just as in PDL.   As previously 
noted, this is particularly useful for 
delaying actions until information 

becomes available to resolve 
decision-relevant uncertainty. 

The decision not to allow 
representation of contingent 
behaviors in GOMS+ means that 
sophisticated multitask 
management capabilities (which 
rely heavily on such behaviors) 
cannot be implemented.  However, 
two multitasking constructs have 
been included.  The priority clause 
assigns a fixed numeric priority to a 
method step and is used to choose 
between two simultaneously active 
goals (cf. John, Vera, and Newell, 
1990).  Note that this condition 
only occurs within the dynamic 
scope of a do-in-parallel/race 
clause or when multiple initial 
goals have been asserted.  The 
requires clause declares that a 
method requires some resource 
such as the left hand (see turn-on-
headlights procedure above).  
Actions that would otherwise be 
executable in parallel but require 
the same resource must be carried 
out sequentially.  If the conflicting 
tasks have priority values, the 
higher valued task is done first; 
otherwise order is determined 
randomly. 

Finally, GOMS+ includes the 
repeat-until clause for 
representing certain repetitive 
behaviors.  This is mainly useful 
where goals are achieved by the 
cumulative effect of repetitive 
action.  For example, one might 
repeat a dig action until a hole of 



specified depth has been created or 
repeat a stirring action until food 
obtains a desired consistency.  
Certain forms of repetitive behavior 
require careful multitask 
management and therefore cannot 
be represented in GOMS+; these 
include especially maintenance 
behavior such as periodically 
scanning instruments on a flight 
deck or dashboard to maintain 
situation awareness.  Other forms 
are being considered for inclusion 
in the language including repeat-
times to repeat an action a 
specified number of times, and 
repeat-at-interval to cause an 
action to repeat after a specified 
amount of time has passed. 

 
4 Conclusion 
 
GOMS is essentially a special-
purpose programming language for 
specifying agent behavior.  
Evaluating its effectiveness in this 
regard means asking a set of 
questions well-known to 
programming language users and 
designers.  For example, does it 
have a clear and unambiguous 
semantics?  Is it elegant?  Intuitive?  
But most important is: can desired 
behaviors be expressed effectively 
and conveniently?  A well-designed 
language anticipates the uses to 
which it will be put by providing 
terminology and structure for those 
uses.  For GOMS, that means 
providing constructs to represent 

common elements of intelligent 
behavior.   

In its original form, GOMS 
incorporates three such elements: 
the use of predefined action 
sequences to achieve common 
goals, the ability to select between 
alternative action sequences, and 
the ability to define goals at 
varying levels of abstraction, 
entailing recursive decomposition 
into subgoals.  If one could choose 
to incorporate only 3 facets of 
intelligent behavior in a model, 
perhaps these would be the best 
choices.   

In our view, there is no reason 
to employ so parsimonious a 
language. Extreme simplicity 
makes it easy to interpret GOMS 
notations; but this virtue recedes in 
importance once the interpretation 
process has been incorporated into 
a computer program.  Ease of 
learning trades off against 
inexpressiveness if users have to 
spend time struggling to 
circumvent the language’s 
limitations.  Human behavior is 
rich and varied, especially in the 
realistically demanding task 
environments where human 
performance modeling could be 
most valuable.   With PDL and 
GOMS+, we hope to make it 
possible and practical to construct 
such models.   
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